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Fatigue crack in a rotary shaft is a common failure observed in rotor systems. Since vibration of the shaft causes alternating fatigue
loads, the crack propagates slowly. Meanwhile, the propagating crack may cause nonlinear or unstable vibration of the rotor
system. In fact, growth of the crack and vibration of the shaft are coupled with each other. Hence, it is necessary to study the fatigue
degradation behavior of the cracked rotor accounting for this coupling effect. In this paper, a coupling model of rotor vibration
and crack growth is established through dynamic theory and fracture mechanics, and a sequential iterative procedure is proposed
to solve the coupling model. +en, the competing degradation failure mode of the cracked rotor is analyzed with regard to the
rapid crack growth failure and the unstable vibration failure. And degradation measures are proposed based on the competing
degradation failure criterion. At last, degradation behaviors with the coupling effect of nonlinear vibration behavior and multiple
parameters including rotation speed, unbalance eccentricity and orientation angle, and damping are investigated by numerical
simulation. +e results indicate that nonlinear vibration behavior and multiple parameters have considerable influence on the
degradation behaviors, which present complex regularity. +e findings are of significance to guide the safety design of the rotor
system for long time operation and help to the further research on prognostics and lifetime prediction.

1. Introduction

Rotary machinery is a kind of common mechanical struc-
ture, which is widely used in industry equipments. Because
of the rotary motion, the rotor suffers from the alternating
fatigue loads. +e initiation and further propagation of the
fatigue crack are caused subsequently. +e presence and
propagation of the crack lead to nonlinear, complicated, or
even unstable vibration behavior and the performance
degradation of the rotor, which may cause severe damage to
mechanical components or even catastrophic accidents.

Many researchers studied the modeling issues of cracked
rotors and ulteriorly analyzed the characteristics of vibration
behavior. Wauer gave a literature survey on the dynamics of
cracked rotors published before 1990 [1]. Dimarogonas
reviewed the research on vibration of cracked structures
especially cracked rotors [2]. Papadopoulos reviewed the
strain energy release approach for modeling cracks in rotors

and vibration behavior of cracked rotors [3]. Kumar and
Rostagi gave a brief review on various approaches for an-
alyzing dynamic characteristics of cracked rotors [4]. Most
studies are based on an assumption that the crack is rela-
tively static; that is, the crack does not propagate or grow
during the operation. Since the propagation of a crack is
a much slower process than the vibration of the rotor, the
above assumption is reasonable when studying the vibration
behavior of the rotor during a short period of time. However,
when assessing the performance degradation level of the
cracked rotor, predicting the fatigue lifetime, conducting the
Prognostic Health Management (PHM), and reliability
analysis during a long period of the operation, it is required
that not only the vibration behavior but also the crack
growth behavior is properly addressed.

Crack growth causes slow decrease of the stiffness and
variation of the dynamic characteristics of a cracked rotor
system, which leads to fatigue degradation. During the slow
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decreasing evolution, the stiffness also changes fast and
periodically. Due to the weight and rotation of the rotor,
the surface crack in the shaft opens and closes periodically,
namely, the breathing effect, which causes the variation of
the stiffness in every rotation period. Accounting for the
breathing effect, the cracked rotor presents nonlinear vi-
bration behavior. Some researchers focused their studies
mainly on unbalance vibration responses of the nonlinear
cracked rotor system [5–9] and the nonlinear vibration
behavior due to the breathing effect of the crack, including
bifurcation, quasi-periodic, and chaotic motions [10–16].
In engineering practice, the crack growth may lead to
variation of the vibration behavior; for example, period-
one motion may turn to bifurcation or quasi-periodic
motion as the crack depth increases. +e nonlinear vi-
bration behavior may cause more complicated fatigue
loads than the period-one response of constant amplitude.
+erefore, when studying the crack growth behavior of
a cracked rotor, the practical fatigue loads with respect to
the vibration responses should be well addressed. How-
ever, when most researchers worked on the issues of the
fatigue crack growth in shafts or round bars, the fatigue
loads of constant or variable amplitudes were pregiven
artificially or hypothetically, rather than the practical
service loads in real applications [17–20]. In fact, the slow
crack growth affects the fast rotor vibration behavior while
the vibration affects the crack growth behavior. Hence, for
a cracked rotor system, the slow process of crack growth
and the fast process of rotor vibration are interactional and
mutually coupled with each other.

Apparently, adequate models and approaches are re-
quired to account for both the fast rotor dynamics and the
slow fatigue degradation of the fast-slow coupled system of
the cracked rotor. Sobczyk and Trebicki provided general
formulations for solving stochastic response-degradation
coupled problem of structures with fatigue-induced
stiffness degradation and presented the efficient sequen-
tial method for coupled response-degradation analysis
[21]. +en, their approach was developed to analyze
nonlinear stochastic vibratory systems with stiffness
degradation [22] and multidimensional vibratory
degrading systems [23]. Luo et al. proposed a model-based
prognostic method and used the interacting multiple
model to estimate the damage evolution of the coupled
system under multiple operation modes [24, 25]. Lei and
Zhu analyzed the crack growth behavior of the elastic
element in nonlinear systems under random loads, ac-
counting for the stiffness degradation caused by the crack
growth [26].

However, the coupling models presented by Sobczyk,
Luo, and Lei et al. are general ones or only for simple
structures. In their study, the essential relationship be-
tween degradation measure (e.g., crack depth) and the
system stiffness is directly given by experience. Moreover,
the general models barely account for the specific char-
acteristics and behavior of the cracked rotor system.
Firstly, the dynamic behavior of the cracked rotor is
influenced by multiple parameters of the system including
not only stiffness but also rotation speed, unbalance

eccentricity and orientation angle, and damping. +e
multiple parameters may have a complicated and coupling
effect on the dynamic characteristics and hence the deg-
radation behavior of the rotor system. Secondly, the only
consideration of the stiffness degradation caused by crack
growth is inadequate because the stiffness also presents
periodic characteristic due to the breathing effect of the
crack. +e nonlinear vibration behavior induced by the
breathing crack may have a remarkable impact on the
degradation behavior. +irdly, the crack growth discipli-
narian of dynamic rotary shafts is more complicated than
that of static simple structures, like bars and plates.
Consequently, it is difficult to provide simplified experi-
ence formulas illustrating the complex relationship be-
tween the crack size and the system stiffness and the
relationship between the vibration responses and the fa-
tigue loads. +ese relationships are required to be revealed
by corresponding physical models. +erefore, with all the
above considerations, it is of great significance to establish
a specific and applicable fast-slow coupling model of the
cracked rotor and then to analyze the degradation be-
havior with the coupling effect of nonlinear vibration
behavior and multiple parameters.

Moreover, before analyzing the degradation behavior of
the cracked rotor, the degradation failure criterion and
appropriate degradation measures are necessary to be
addressed. Sobczyk and Trebicki defined degradation
measure based on the crack depth, and fracture criterion was
regarded as the degradation failure criterion [21, 22].
However, it may be inadequate since the degradation failure
may occur before the crack grows to the critical depth due to
severe or unstable vibration behavior. To insure the stability
of the vibration, some researchers worked on the stability
issues of the cracked rotor with multiple parameters [27–29].
Nevertheless, unstable vibration failure may not occur even
if the crack grows over the critical depth in some cases.
+erefore, the competing degradation failure modes caused
by both rapid crack growth and unstable vibration should be
well considered. +en, degradation measures should be
properly proposed accounting for the competing degrada-
tion failure criterion. Moreover, the unstable vibration of the
cracked rotor presents bifurcations of different types [29],
which may have different influences on the degradation
behavior.

+e main objective of this article is twofold. One is to
establish the fast-slow coupling model accounting for
nonlinear dynamics of the cracked rotor and the fatigue
propagation of the transverse surface crack. +e other is
to analyze the degradation behavior with the coupling
effect of the nonlinear vibration behavior and the mul-
tiple parameters of the rotor system. Firstly, the coupling
model of a Jeffcott rotor with a transverse surface crack is
established based on dynamic theory and fracture me-
chanics. And a sequential iterative procedure is proposed
to approximately solve the coupling model. +en, the
degradation measure of the cracked rotor is defined based
on the competing degradation failure criterion which
accounts for both the unstable vibration of the rotor and
the rapid growth of the crack. At last, the degradation

2 Shock and Vibration



www.manaraa.com

behaviors with the coupling effect of multiple parameters
of the rotor system including rotation speed, unbalance
eccentricity and orientation angle, and damping are
analyzed through numerical simulation and several new
findings are reported.

2. Problem Description

We consider a cracked rotor, depicted in Figure 1,
modeled as a Jeffcott rotor system in which the rotor is
simplified to a centered rigid disk on a massless elastic
shaft and a transverse surface crack is located at the
midspan of the rotor, which propagates as the shaft ro-
tates. +e initial of the crack is not considered in this
study, and only the fatigue degradation behavior caused
by the macroscopic crack growth is analyzed. For sim-
plifying the analysis and calculation, several assumptions
are made in this study:

(1) Torsional vibration and axial vibration of the shaft
and shearing action are omitted. Only lateral vi-
bration and crack growth under mode I are
considered.

(2) +e front of the crack is a straight line and main-
tained during the growth.

(3) +e linear elastic fracture mechanics is employed for
the analysis due to the applied stress being much less
than the yielding stress.

(4) Only the plane strain condition is considered at the
crack front due to the geometry constraint.

(5) +e thickness of the disk is neglected, and the dis-
placement at the crack location is the same as the
disk.

3. Model Establishment

+e physical model of a Jeffcott rotor with a propagating
surface transverse crack is established in two steps. Firstly,
the dynamic model of the cracked rotor is established and
then the crack growth model. +e two models are coupled
with each other due to the growing crack, which will be
described in detail in this section. Noting that the main
creative study focuses on the coupling effect of rotor dy-
namics and crack growth on the degradation behavior, the
widely-used classical models of the cracked rotor and the
crack growth are adopted for simplicity.

3.1. Vibration Differential Equations of the Cracked Rotor.
+e mass of the Jeffcott rotor m is assumed to be concen-
trated on the disk in the midspan. Let x-y be the fixed
coordinates and ξ − η be the rotating coordinates in the crack
cross section as shown in Figure 2.

+e unbalance eccentricity of the rotor is ε, which is
oriented at an angle β (unbalance orientation angle) with
the ξ coordinate direction. θ is the instantaneous angle
of rotation at time t (θ � ωt), and ω is the rotation speed.
c is the damping of the rotor system. Due to the existence
of the crack, kx and ky are the stiffness of the x and y

coordinate directions, respectively, and kxy and kyx are
the cross stiffness. +e dynamics of the rotor is combined
by the translation of the centroid and the rotation around
it. +e dynamic equations for the cracked Jeffcott rotor
can be written in the fixed coordinate system as

m €y + c _y + kyy + kyxx � mεω2 cos(θ + β)−mg,

m €x + c _x + kxx + kxyy � mεω2 sin(θ + β).
(1)

+e stiffness coefficients of (1) in the fixed coordinate
system can be obtained from the stiffness coefficients kξ , kη,
kξη, and kηξ defined in the rotational frame ξ − η, by the
transformation matrix T:

ky kyx

kxy kx

⎡⎣ ⎤⎦ � T−1
kξ kξη

kηξ kη

⎡⎣ ⎤⎦T, (2)

where the transformation matrix T is

T �
cos θ sin θ

−sin θ cos θ
􏼢 􏼣. (3)

Cross section of the cracked rotor at the crack location is
showed in Figure 3, where a is the depth of the crack,D is the
diameter of the rotor, α′ is the depth of the crack at the

location where the η coordinate is w, and α′ �
���������

D2 − (2w)2
􏽱

.
+e stiffness matrix is transformed from the flexibility
matrix which can be derived by the strain energy release
approach [3, 9, 16] (Appendix A). +e flexibility coefficients
of the cracked rotor can be derived as

Disk

Crack

Figure 1: Schematic of the cracked rotor.
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Figure 2: Coordinate system.
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gξ �
L3

48EI
+ B128L2α′2α2

EπD8 F
α
α′

􏼒 􏼓
2
dα dw,

gη �
L3

48EI
+ B512L2w2α

EπD8 F′
α
α′

􏼒 􏼓
2
dαdw,

gξη � gηξ � B256L2α′wα
EπD8 F

α
α′

􏼒 􏼓F′
α
α′

􏼒 􏼓dα dw.

(4)

It is worth noting that the integration limits in (4)
depend on the open part of the crack which varies over
time. On the one hand, the crack opens and closes pe-
riodically because of the breathing effect. One the other
hand, since the crack propagates, the depth of the crack
(a(t)) increases with time. +erefore, the integration
limits in (4) depend on two aspects: the breathing effect
and the propagation of the crack. Temporally, the prop-
agation of the crack is omitted in this section, and only the
breathing effect is considered, so the crack depth a(t)

becomes a. Several crack breathing models have been
proposed, such as the harmonic model proposed by Mayes
and Davies [1, 6, 30, 31], the crack closure line (CCL)
model proposed by Darpe et al. [9, 16], and some new
models with consideration of unbalance force [32]. In
most applications, the gravity of the rotor is much larger
than the unbalance force. In this situation, where the
gravity is dominant, the harmonic model is appropriate
and applied here. +e stiffness matrix in the rotational
frame is as follows:

kξ 0

0 kη

⎡⎣ ⎤⎦ �
k0 0

0 k0
􏼢 􏼣−F(θ)

Δkξ 0

0 Δkη
⎡⎣ ⎤⎦, (5)

where

F(θ) �
1
2

[1− cos(θ)], (6)

Δkξ � k0 − 􏽢kξ ,

Δkη � k0 − 􏽢kη,
(7)

in which k0 is the stiffness of the uncracked rotor, and
k0 � 1/g0; 􏽢kξ and 􏽢kη are the stiffness in the coordinate di-
rections ξ and η when the crack is totally open. At fully open
state of the crack, the flexibility coefficients 􏽢gξ , 􏽢gη, and 􏽢gξη
can be calculated by (4), in which the integration region is
the arched area of the open part of the crack. And the
stiffness coefficients are

􏽢kξ �
􏽢gη

􏽢gξ􏽢gη − 􏽢g2
ξη

,

􏽢kη �
􏽢gξ

􏽢gξ􏽢gη − 􏽢g2
ξη

.

(8)

Using (1)–(3) and (5)–(7), the equations of motion for
the cracked rotor in a fixed frame x-y can be written as
follows:

m €y + c _y + k0 − 0.5F(θ) 2k0 − 􏽢kξ − 􏽢kη + 􏽢kη − 􏽢kξ􏼐 􏼑cos 2θ􏽨 􏽩􏽮 􏽯

· y− 0.5F(θ) 􏽢kη − 􏽢kξ􏼐 􏼑sin 2θ􏽨 􏽩x � mεω2 cos(θ + β)−mg,

m €x + c _x + k0 − 0.5F(θ) 2k0 − 􏽢kξ − 􏽢kη − 􏽢kη − 􏽢kξ􏼐 􏼑cos 2θ􏽨 􏽩􏽮 􏽯

· x− 0.5F(θ) 􏽢kη − 􏽢kξ􏼐 􏼑sin 2θ􏽨 􏽩y � mεω2 sin(θ + β).

(9)

It is important to note that stiffness coefficients in the
dynamic model of the cracked rotor display periodic vari-
ation. And the period is equal to the rotation period T of the
rotor, T � 2π/ω. Furthermore, stiffness coefficients decrease
slowly due to the growth of the crack, which will be illus-
trated in detail in Section 3.2. +erefore in real applications,
stiffness coefficients in the dynamic model of the cracked
rotor include two parts: the periodic part of fast variation
and the decreasing part of slow variation. Consequently, the
dynamic stiffness is a very complex function unable to be
expressed in explicit formulations. +e complex stiffness
coefficients lead to complex vibration and degradation be-
haviors and bring difficulty to the solution of the dynamic
model.

3.2. Propagation Equations of the Transverse Surface Crack.
During the long time of operation, the transverse crack at the
surface of the shaft grows slowly due to the fatigue stresses
caused by the vibration of the rotor. +e time history of the
crack propagation is a very slow process, which can be
regarded as the fatigue degradation evolution of the cracked
rotor. A large majority of fatigue crack growth experiments
on small specimens have shown that the fatigue growth of
a crack in the metallic material is mainly controlled by the
range of stress intensity factor (ΔK) of the crack front, al-
though many factors, such as mean stress, load ratio and
frequency, random loading, multiaxial and complex stress
states as well as environments (corrosion and temperature),
plastic zone, andmicrostructure, affect themanner of fatigue
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a′

η

ξ

Figure 3: Cross-section at the crack location.
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crack growth. When ΔK is larger than the threshold of the
fatigue crack growth (ΔKth), the crack growth behavior can
be described by the famous Paris–Erdogan laws [33, 34]:

da

dN
� C(ΔK)

B
, (10)

where a is the depth of the crack, N is the number of the
stress cycles, and C and B are empirical parameters ac-
counting for the material and environmental effects and in
practice, can be obtained from small specimens by a regu-
lated procedure, such as that proposed in ASTM E647-15
[35].
ΔK can be calculated by (A.5)–(A.9). +e bending force

acting on the crack cross section Qξ and Qη can be calculated
as follows:

Qξ � kξξ + kξηη,

Qη � kηη + kηξξ,
(11)

where the vibration responses ξ and η in the rotation frame
can be obtained by a transformation from the rotor re-
sponses x and y in the fixed frame:

ξ

η
􏼨 􏼩 �

cos θ −sin θ

sin θ cos θ
􏼢 􏼣

y

x
􏼨 􏼩. (12)

kξ , kη, kξη, and kηξ are stiffness of ξ and η coordinate
directions and crossing direction, respectively:

kξ �
gη

gξgη −g2
ξη

,

kη �
gξ

gξgη −g2
ξη

,

kξη � kηξ �
−gξη

gξgη −g2
ξη

.

(13)

From (A.6), one can conclude that the SIF at any location
of the crack front is related to the local stress, the geometry
size of the crack, and the specific position along the crack
front. +erefore, ΔK at different locations is unequal, the
same as the crack growth rates, which cause the change of the
shape of the crack front. When the crack grows, the new
shape of the crack front is only determined by the current
crack front and has nothing to do with the initial crack front
[19, 35]. In [33], it can be found that, under bending fatigue
stress, the shape of the crack front tends to be a straight line
as the crack grows to the center of the shaft. And many
researchers assumed the crack front to be straight for
simplification when studying cracked rotors [3, 36–38]. In
this paper, for convenience of the analysis, it is assumed the
crack front maintains straight when the crack grows.

Based on the assumption that the crack front maintains
straight, an appropriate equivalent SIF is necessary to be
defined to apply the Paris–Erdogan laws. In [39], the re-
searchers derived an average SIF expression as an equivalent
SIF from the SIF expressions of the edge and middle points
of the crack front through Lagrange polynomial in-
terpolation. In this study, in order to assure the safety of the

rotor system, a conservative equivalent SIF is defined, which
is the SIF of the point where the crack grows fastest. From
[19, 40], regardless of the stress range Δσ, the SIF of the edge
point is larger than that of the middle point. Moreover, in
the condition of this study, it can be derived from (A.7) that
the stress range Δσ of the edge point is larger than that of the
middle point. +erefore, ΔK at the edge point of the crack
front is the largest, which means the crack at the edge point
grows fastest, and the SIF of the edge point is chosen to be
the equivalent SIF.

+e edge point of the crack front actually refers to a point
very close to the intersection of the crack front with the free
surface of the shaft [19].When the depth of the crack is a, the
η coordinate of the edge point is w � ±

�������
aD− a2

√
, the crack

depth rate α/α′ converges to zero from the positive direction,
and the limits of the functions F and F′ are calculated as
follows:

lim
α/α′⟶0+

F
α
α′

􏼒 􏼓 � lim
α/α′⟶0+

F′
α
α′

􏼒 􏼓 � 1.1220. (14)

From (A.5)–(A.7), the equivalent SIF Ke is written as
follows:

Ke � 1.1220σe
���
πa

√
, (15)

where σe is the equivalent stress and expressed as follows,
which is the total stress at the edge point:

σe � σξ + ση �
L

4I

D

2
− a􏼒 􏼓Qξ +

�������
aD− a2

√
Qη􏼔 􏼕. (16)

It is worth noting that the depth of the crack a is growing
over time actually and should be written as a(t). From (15)
and (16), one can derive that the equivalent SIF Ke is
dominant by the crack depth a(t) which varies slowly and
the equivalent stress σe which varies fast. Using (10), the
crack depth aN after N (N � 1, 2, 3, . . .) stress cycles (or
rotation periods) can be calculated by integration from the
crack depth aN−1 as follows:

aN � aN−1 + 􏽚
N

N−1
C ΔKe(N)( 􏼁

B
dN, (17)

where ΔKe(N) is the range of the equivalent SIF in the Nth
rotation period.

3.3. Solution of the Coupling Model. From Sections 3.1 and
3.2, the degrading cracked rotor system can be expressed as
a hierarchical dynamic system form:

_q � f(q, μ(Φ)), (18a)

_Φ � ]g(Φ, q), (18b)

where q � y x􏼂 􏼃
T is a fast-time variable; Φ is a slow-time

variable and refers to the crack depth a in this study; μ is
a function ofΦ representing stiffness matrix; ] is a small rate
constant which defines a time scale separation between fast
and slow-time dynamics; and the overdot denotes differ-
entiation with respect to time t. Over the time scales ofΟ(]),
we consider (18a) to be quasi-stationary since drifts in μ are
negligible.
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+e rotor vibration equations and the crack propa-
gation equations are coupled with each other, forming the
vibration-degradation coupling model. Since it is difficult
to describe the function μ and g by explicit function ex-
pressions, the customary approximate analytic procedures
cannot be applied to solve the coupling model. Alterna-
tively, a numerical procedure is proposed here, which is
based on sequential iteration. In engineering applications,
the crack grows very slowly compared to the natural time
scale of the rotor vibration process. It means that the crack
depth can be regarded as constant in a short time interval.
In this study, it is assumed that the crack depth aM−1 is
constant in n rotation periods (time interval nT), and after
n periods, the crack depth grows to aM. Based on this
assumption, the stiffness coefficients of the vibration
equations dominated by the crack depth can be calculated
in the time interval of n rotation periods, and vibration
differential equations (9) can be solved through various
existing analytic or numerical procedures. +e solutions of
(9) are vibration responses (x(t), y(t)) of the cracked
rotor and are used to calculate the time history KeM(t)

(tM−1 < t< tM) by (11)–(16). +en, using (17), aM is cal-
culated as follows:

aM � aM−1 + 􏽚
M

M−1
C ΔKeM(N)( 􏼁

B
dN, (19)

where ΔKeM(N) denotes the SIF range of the Nth rotation
period, which is dependent on KeM(t). At last, given the
initial crack depth a0, the crack growth process described by
the crack depth aM (M � 1, 2, 3, . . .) of each time interval
can be obtained by the iteration procedure.

It is worth noting that KeM(t) is determined by
x(t) andy(t) in the time interval tM−1 < t< tM. When the
vibration of the rotor is period-one motion, the amplitude of
each period is equal. +erefore, ΔKeM(N) of every rotation
period is also the same, and in this situation, (19) can be
written as follows:

aM � aM−1 + nC ΔKeM(N)( 􏼁
B
. (20)

However, when the vibration behavior of the cracked
rotor is complex, such as bifurcation motion, quasi periodic
motion, and chaotic motion [10–16], KeM(t) of each rota-
tion period is not the same anymore. In this situation,
a statistical counting method is necessary to be applied to
count ΔKeM(N) from KeM(t). In this study, the rain-flow
counting method [41, 42] is applied which is widely used in
research and real applications. +en, the integration part of
(19) can be calculated.

4. Degradation Measures

To evaluate the degradation level and analyze the degra-
dation behavior, quantitative degradation measures are
necessary to be proposed. Moreover, the definition of
degradation measures is associated with the threshold of the
degradation failure or the so-called failure criterion. For the
cracked rotor system, a competing degradation failure cri-
terion is described in detail in this section.

4.1. Degradation Failure Criterion of the Cracked Rotor. If
one wants to define the degradation measure of the cracked
rotor, a clear identification of failure criterion is needed. In
[39], two failure criteria are considered: (1) geometrical limit:
the failure occurs automatically when crack depth is larger
than shaft diameter and (2) critical SIF: the fracture occurs
when maximum SIF is larger than critical SIF. However in
engineering applications, the fracture of the rotor is not
allowable inmost cases.+e rotor shouldmaintain a safe and
stable running state. Once the running state becomes risky
or unstable, the inspection or maintenance is required.
Detecting the dangerous and unstable running states as soon
as possible is of great significance, which is an important
objective of condition monitoring and prognostics. Obvi-
ously, it is unsafe and inappropriate to regard the fracture
criterion of the shaft as the degradation failure criterion of
the rotor system. +at is why the safe factor is necessary in
engineering applications.

Fatigue experiments illustrate that the crack grows
rapidly at increasing growth rate greater than that of the
Paris law in a short period time before maximum SIF reaches
critical SIF [19]. Consequently, a critical crack depth for
rapid crack growth (notated as ac) can be defined through
experiments or experience. Once the crack grows deeper
than ac, rapid and unstable crack growth occurs. Although
fracture does not occur during the time of rapid and unstable
crack growth, the running state of the rotor system is risky.
+erefore, in this study, a degradation failure criterion based
on the growth of crack is defined as a> ac.

Moreover, for the vibration behavior of the cracked
rotor, unstable vibration occurs when the crack depth
reaches some thresholds for some rotation speeds [29],
which is undesirable in real applications. +e situation
possibly exists, in which unstable vibration occurs before the
crack depth reaches ac. +us, it is necessary to address the
condition on which unstable vibration occurs. In Section 3.3,
it is assumed that the crack depth is constant in the short
time interval of nT. In this situation, the stiffness coeffi-
cients of the cracked rotor system vary periodically, and
Floquet’s theory is applicable for stability analysis [43–45]
(Appendix B).

Once Floquet multipliers exceed the unit circle on the
complex plane, the vibration of the cracked rotor system
becomes unstable and bifurcation occurs. As shown in
Figure 4, different distributions of the Floquet multipliers on
the complex plane correspond to different types of bi-
furcations. +ere are three types of bifurcations: fold (period
doubling), Hopf, and flip (saddle-node), as shown in Figure 4
[29, 37]. When even small damping (e.g., damping ratio
ζ � 0.01) exists, the unstable region corresponding to Hopf
bifurcation vanishes [37]. Since damping surely exists in
engineering applications, only fold and flip are considered in
this study.

As to period-doubling bifurcation, vibration amplitude
does not increase suddenly. In this situation, degradation
failure does not occur to the cracked rotor since the vibration
amplitude is not overlarge. As to saddle-node bifurcation,
vibration amplitude increases suddenly because of the di-
vergence of the vibration responses. In this situation,
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degradation failure occurs, even if the crack depth has not
reached ac. When the vibration behavior reaches the
boundary of the unstable region corresponding to the
saddle-node bifurcation, the crack depth at this time is
regarded as a critical crack depth for unstable vibration
(notated as au). Given the necessary parameters in (9) in-
cluding mass, damping, unbalance eccentricity and orien-
tation angle, and rotation speed, one can address au under
this parameter group through Floquet’s theory. Accordingly,
another degradation failure criterion based on vibration
behavior is defined as a> au.

In conclusion, two degradation failure criteria of the
cracked rotor are defined based on the crack growth and
the rotor vibration, respectively. If one criterion is reached,
the degradation failure occurs. +us, a competing degradation
failure criterion is formed.

It is worth noting that when the vibration of the cracked
rotor is period-one motion, the coupling model can be
solved by (20). However, when bifurcation occurs, the rain-
flow countingmethod is acquired to calculate the integration
part of (19).

4.2. :e Proposed Degradation Measure. To define degra-
dation measures, the competing degradation failure crite-
rion accounting for both rapid crack growth and unstable
vibration response are considered. According to [21], the
degradation measure D (0≤D≤ 1) is defined based on the
evolution of crack growth. When the crack depth is zero, D

equals 0, which means no crack exists. When the crack depth
reaches ac or au, D equals 1, which means degradation
failure occurs. When the crack depth is aM, the degradation
measure is written as DM and calculated as follows:

DM �
aM

min acau􏼂 􏼃( 􏼁
. (21)

Furthermore, the average degradation rate at this time is
defined as follows:

VM �
DM+1 −DM

n
. (22)

It is assumed that there is already macroscopic initial
crack on the surface of the shaft. +e depth of the initial

crack is assumed to be a0 and the initial degradationmeasure
is D0 from (21). +e fatigue degradation life TD is defined as
the number of stress cycles (or rotation periods), during
which the cracked rotor degrades from D0 to 1. If DM � 1,
TD � nM.

5. Numerical Simulation and
Parametric Sensitivity

5.1. Procedure and Parameters of Numerical Simulation.
+e degradation behavior of the cracked rotor described by
the proposed coupling model is addressed by numerical
simulation in this study, and the procedure is as follows:

(1) Given the initial crack depth and necessary pa-
rameters of the coupling model, the stiffness matrix
of the cracked rotor is calculated using (4)–(8).+en,
the Floquet multipliers under this parameter group
are calculated according to Appendix B.

(2) Based on Floquet’s theory and the distribution of the
Floquet multipliers on the complex plane, the vi-
bration state of the cracked rotor is indentified. If the
vibration state is stable or period-doubling bi-
furcation, go on to the next step. If the vibration state
is the saddle-node bifurcation, it means degradation
failure occurs and the computation stops. +e crack
depth at this time is the critical depth for unstable
vibration (notated as au).

(3) +e steady-state responses of the vibration differ-
ential equations are derived by the Runge–Kutta
fourth order numerical integration method. +en,
using (11)–(16), Ke(t) of n rotation periods of time is
calculated. +e new crack depth after growth is
derived by (19). If the vibration state is stable, (20) is
used. If not, the rain-flow countingmethod is applied
to get ΔKeM(N).

(4) Judge whether the new crack depth reaches the given
critical depth for rapid crack growth (notated as ac).
If so, it means degradation failure occurs and the
computation stops. If not, go back to step 1, and
continue the computation using the new crack depth
until degradation failure occurs.
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Figure 4: Eigenvalues on the complex plane corresponding to the three types of bifurcation: (a) fold; (b) Hopf; (c) flip.
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In order to insure the veracity and reliability of the
proposed model and simulation, the classical and validated
models and theory are adopted, such as the harmonic model
for the breathing effect, Paris’s law for the crack growth,
Floquet’s theory for the stability analysis, and so on.
Moreover, some intermediate results of the proposed sim-
ulation are compared to that of the published literatures,
which is illustrated in Section 6.

Physical rotor parameters used for the simulations are as
follows: shaft diameter, D� 0.045m; length, L� 0.7m; disk
mass, m� 25 kg; and Young’s modulus, E� 2.1× 105MPa,
referring the cracked rotor system in [16]. +e empirical
parameters used in the Paris–Erdogan laws are as follows:
C� 6×108, B� 3, referring to the crack growth model in
[39]. +e other parameters including unbalance eccentricity
ε and orientation angle β and damping factor ζ are analyzed
in detail in the following sections.

For different rotary shafts, physical rotor parameters
such as shaft diameter, length, and mass are determined by
the design scheme or can be directly measured in real ap-
plications. Young’s modulus E and the parameters B and C
used in the Paris–Erdogan laws are material related, which
can be chosen according to the prior knowledge about the
shaft material. Besides, without any prior knowledge, they
can be measured by the experiment [20, 34, 46]. +e other
parameters which are difficult to measure directly, such as
unbalance eccentricity, damping factor, and initial crack
size, can be estimated through the off-line experiment or on-
line measured data by various parameter identification
methods, such as the least squares method and the maxi-
mum likelihood method [47–49]. Since the parameter
measurement and identification are not the key point in this

study, they are not introduced in detail and interested
readers can refer to the literatures listed above.

It is assumed the time interval is n� 103 rotation periods,
during which the crack depth is constant. Floquet multi-
pliers are computed with the time interval K� 50 and the
order of Taylor expansion Nl � 4. Given crack depth a, the
crack depth ratio r � a/D. It is assumed the initial crack
depth r0 � 0.1 (r0 � a0/D), and the critical depth for rapid
crack growth rc � 0.5 (rc � ac/D).

5.2. Parametric Sensitivity Analysis. Parametric sensitivity
analysis is important to the systemmodel analysis. It helps to
know which parameter is more sensitive to the system
output. In this study, four parameters are of interest, namely,
rotation speed Ω, unbalance eccentricity ε and orientation
angle β, and damping factor ζ, and the concerned system
output is fatigue degradation life TD. According to the re-
search in [19], the concerned parameter ranges and corre-
sponding unit are listed in Table 1.

Given a parameter space Hn of n dimensions, the local
sensitivity of the system to a parameter pi (i � 1, 2, . . . , n) is
defined as the partial derivative of the system function with
respect to the parameter. According to [50], the local sen-
sitivity of pi to TD about a nominal point p∗ in the pa-
rameter space is calculated as

S
L
i p
∗

( 􏼁 �
TD p∗1 , . . . , p∗i− 1, p∗i + Δp∗i , p∗i+1, . . . , p∗n( 􏼁−TD p∗( 􏼁

Δp∗i
×

p∗i
TD p∗( 􏼁

, (23)

where Δp∗i is the small increment in the parameter of
interest.

Since the global sensitivity analysis accounts for in-
teractions between variables and does not depend on the
choice of a nominal point, it is adopted in this study.+e grid
resolution of the parameter space is ten grid points in each
parameter axis, and 104 points are used to calculate global
sensitivities. Based on a finite summation technique [50], the
global sensitivity of pi to TD is calculated as

S
G
i �

1
m

􏽘

m

k�1
S

L
i p

k
􏼐 􏼑, (24)

where pk represents the kth point in Hn and m � 104 is the
total number of points in Hn. +e global sensitivities of the
interested parameters are shown in Table 1. +e most
sensitive parameter is rotation speed, which means the

rotation speed is more influential to the degradation life than
other parameters. +e second sensitive parameter is un-
balance eccentricity, which is more sensitive than the cor-
responding unbalance orientation angle. +e least sensitive
parameter is the damping factor. Notably, small global
sensitivity does not mean a parameter is not important
because its local sensitivity may be large about some possible
points in the parameter space.

Since global sensitivity only presents the overall and
general influence of a parameter to the system, we also need
to know the specific and detailed influence of multiple
parameters on the degradation behavior. +e degradation
behavior of the cracked rotor is studied by using degradation
measure D, fatigue degradation life TD, and average deg-
radation rate VM. Different influences of multiple param-
eters (rotation speed, unbalance eccentricity and orientation
angle, and damping) are investigated in detail in Section 6.

Table 1: +e concerned parameters and their global sensitivities.

Ω ε β ζ
Range [1000,10000] [0.5,2] [0,π] [0.01,0.05]
Unit rpm ×10−5m rad —
Sensitivity 1.56 0.98 0.46 0.05
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6. Results and Discussion

Given a specific rotation speed, the degradation evolution of
the cracked rotor is computed, which is characterized by the
degradation measure D. As comparison, the degradation
evolution of the cracked rotor model omitted the coupling of
the vibration response, and crack growth is also presented by
the degradation measure D. Without accounting for the
coupling effect, the vibration response of the initial state is used
to calculate the crack growth. In particular, given the unbalance
eccentricity ε� 1× 10−5m, unbalance orientation angle β � 0,
and damping factor ζ � 0.01 (ζ � c/2

����
k0m

􏽰
), the degrada-

tion evolutions for rotation speedΩ� 1000 rpm, 3000 rpm,
5000 rpm, and 7000 rpm are shown in Figures 5(a)–5(d),

respectively, where the degradation time is presented as
number of stress cycles.

As shown in Figures 5(a), 5(b), and 5(d), the degradation
measure D with the coupling effect considered reaches 1 for
less number of cycles than D without coupling, which means
the degradation is slower if the coupling effect is omitted.
+is phenomenon is in agreement with the result of [21]. As
to a linear system, magnitude of vibration response increases
gradually as stiffness of the system decreases, which leads to
the acceleration of degradation. However, as to the nonlinear
cracked rotor system, magnitude of vibration response may
decrease as stiffness of the system decreases for some specific
parameter group.+e nonlinear breathing effect of the crack
may destroy or weaken the mechanism by which rotational
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Figure 5: Degradation evolution presented by different degradation measures for different rotation speeds: (a) 1000 rpm; (b) 3000 rpm; (c)
5000 rpm; (d) 7000 rpm.
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energy is transformed into transverse vibrational energy,
which slows down the degradation, as shown in Figure 5(c).
+is phenomenon of the decrease in vibration amplitude as
crack propagation has been reported in [51]. In engineering
applications, underestimating the degradation rate may
cause risky accidents, while overestimating the degradation
rate can lead to a waste of maintenance resources. +erefore,
when performing the fatigue design or using physics-based
method to prognostic or predict residual life, the coupling
effect cannot be omitted.

6.1. Effect of Rotation Speed. For the uncracked rotor,
the first order critical rotation speed can be calcu-
lated using the stiffness of the uncracked rotor, as

Ω0 � 60
�����
k0/m

􏽰
/2π � 4645 rpm. +e simulations in this

study run over the speed range 600 rpm–10000 rpm, which
covers the double of the critical speed (2Ω0 � 9290 rpm).
Given the parameters ε� 1× 10−5m, β � 1/2π, and ζ � 0.01,
the degradation evolutions for different rotation speeds
(1000 rpm–10000 rpm with increment 500 rpm) are shown
in Figure 6, where the degradation evolutions are charac-
terized by the degradation measure D.

As Figure 6 shows, the degradation rate increases as the
crack growth and the degradation evolution can be ap-
proximately depicted by the exponential function. For some
rotation speeds, the degradation is obviously faster than
others, like the degradation evolution for 1500 rpm,
4500 rpm, and 9000 rpm. However, there is no intuitive
monotonous regularity for degradation evolutions as

0 50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N (×103 cycles)

D

Ω = 1000
Ω = 1500
Ω = 2000

Ω = 2500
Ω = 3000

(a)

N (×103 cycles)
0 50 100 150

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

Ω = 3500
Ω = 4000
Ω = 4500

Ω = 5000
Ω = 5500

(b)

N (×103 cycles)
0 50 100 150

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

Ω = 6000
Ω = 6500
Ω = 7000

Ω = 7500
Ω = 8000

(c)

N (×103 cycles)
0 50 100 150

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

Ω = 8500
Ω = 9000

Ω = 9500
Ω = 10000

(d)

Figure 6: Degradation evolutions for various rotation speeds.
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rotation speed increases. In fact, since the degradation of the
cracked rotor may be influenced by multiple factors, such as
unbalance eccentricity ε and orientation angle β and
damping factor ζ, a simple regularity controlled by a single
factor is definitely not adequate to illustrate the degradation
behavior.

Given ε� 1× 10−5m, β � 1/2π, and ζ � 0.01, the fatigue
degradation lifes TD for different rotation speeds are shown
in Figure 7. TD does not change monotonously with speed
but has several valleys. Specifically, when the rotation speed
Ω is around 4600 rpm, TD is of very few cycles, which means
degradation failure occurs very fast. 4600 rpm is almost the
critical speed noting that the critical speed of the cracked
rotor is a little less than that of the uncracked rotor due to the
decrease of stiffness. +erefore, the resonance causes the
large amplitude of the vibration response and furthermore
the fast degradation. When the rotation speed is around
1100 rpm, 1500 rpm, and 2300 rpm, which are the sub-
multiples (1/2, 1/3, and 1/4) of the critical speed, TD also
decreases. +e reason is that subharmonic resonance occurs
[16] and causes the acceleration of degradation. +is phe-
nomenon of fast degradation gradually vanishes as speed
decreases.

However, 2900 rpm (almost 2/3 of the critical speed) is
far away from the resonance and subresonance region,
around which TD also has a small valley. +e reason is that
unstable vibration occurs at this parameter group if
damping is very small [52, 53]. And the bifurcation causes
the fast degradation, which will be verified in the following
part.

When the rotation speed is around 9100 rpm (almost the
double of the critical speed), TD decreases and the initial
degradation measure D is not 0.2 (Figure 6(d)). In this
situation, degradation failure occurs owing to unstable vi-
bration (saddle-node bifurcation) before the crack grows to
the critical depth for rapid crack growth (rc � 0.5). As shown
in Figure 8, when the rotation speed is 9000 rpm, once the
crack depth ratio reaches 0.32, the crack grows rapidly and
failure occurs due to unstable vibration. +e crack depth
ratio 0.32 responds to the critical crack depth for unstable
vibration (notated as au). Similarly, when the rotation speed
is 8500 rpm, failure occurs at r � 0.43.

Given ε� 1 × 10−5 m, β � 1/2π, and ζ � 0.01, the 3D and
2D color graphs of the average degradation rate VM versus
crack depth ratio and rotation speed are presented in
Figure 9. It is observed that the rotation speeds around
which VM is relatively large are coincided with the valleys
of TD shown in Figure 7. +ese rotation speeds are the
critical speed (4600 rpm), double (9100 rpm) and sub-
multiples (1100 rpm, 1500 rpm, and 2300 rpm) of the
critical speed, and 2/3 of the critical speed (2900 rpm),
respectively. +e regions of relatively large VM around the
critical speed and double of it are well coincided with the
unstable vibration regions of the cracked rotor with small
damping [27, 37, 47, 48]. However, it is worth noting that,
around the critical speed, VM increases gradually while
around double of the critical speed, VM increases abruptly
when the crack depth reaches some threshold. +e reason
is that, around the critical speed, the cracked rotor reaches

the unstable vibration region through period-doubling
bifurcation, in which case the response amplitude in-
creases gradually as the crack grows. However, around
double of the critical speed, the cracked rotor reaches the
unstable vibration region through saddle-node bi-
furcation, in which case the divergence of vibration re-
sponse occurs abruptly when the crack grows to some
threshold depth. +e Floquet multipliers for 4000 rpm–
4600 rpm and 8000 rpm–9100 rpm with the crack depth
rate changing from 0 to 0.5 are plotted in Figures 10(a) and
10(b), respectively, which illustrate the two different types
of bifurcation. Besides, around 2900 rpm and r � 0.45, VM

is also relatively large, which is responsible for the valley of
TD at 2900 rpm in Figure 7. +e bifurcation occurs at this
parameter group as shown in Figure 11. +e response
amplitude of the y coordinate direction presents a larger
variation around rotation speed 2900 rpm (Figure 11(a))
and around crack depth rate 0.45 (Figure 11(b)).
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6.2. Effect of Unbalance. In engineering practice, unbalance
eccentricity is inevitable due to manufacturing and assembly
errors. +e unbalance eccentricity and orientation angle are
two crucial parameters for the cracked rotor, which are
analyzed in the following two sections, respectively.

6.2.1. Effect of Unbalance Eccentricity. +e unbalance ec-
centricity is usually very small, but the effect on vibration
behavior cannot be ignored [16, 29]. +en, the vibration
behavior affects the crack growth, so it is significant to
study the effect of unbalance eccentricity on degradation
behavior. Given β � 1/2π and ζ � 0.01, TD for various
rotation speeds and different unbalance eccentricities
(ε� 0.5 ×10−5 m, 1 × 10−5 m, 1.5 ×10−5 m, and 2 ×10−5 m)
are shown in Figure 12. For different unbalance eccen-
tricities, the regularity between TD and rotation speed is
almost the same. When the rotation speed is very slow
(Ω< 1800 rpm), TD for different unbalance eccentricities

are nearly identical. However, as rotation speed in-
creases, the larger the unbalance eccentricity is, the
shorter the TD is, owing to the larger amplitude of the
vibration responses. Besides, around the critical speed
and submultiples of it, the effect of unbalance eccen-
tricity is relatively slight. However, around the rotation
speeds far away from the resonance and subresonance
regions, unbalance eccentricity has considerable influ-
ence on TD.

Given β � 1/2π and ζ � 0.01, the average degradation
rates of the cracked rotor for different eccentricities
(ε� 0.5×10−5m, 1× 10−5m, 1.5×10−5m, and 2×10−5m)
are shown in Figure 13. +e regions of relatively fast average
degradation rate are almost the same for different eccen-
tricities. As the eccentricity increases, the fast degradation
region around the critical speed becomes larger, while that
around submultiples and double of the critical speed barely
changes. It is illustrated that eccentricity has little effect on
the subresonance motion compared to the resonance.
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Figure 10: Floquet multipliers with r changing from 0 to 0.5 for (a) 4000 rpm–4600 rpm (period doubling) and (b) 8000 rpm–9100 rpm
(saddle-node).
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Figure 9: Average degrading rate versus crack depth ratio and rotation speed with ε� 1× 10−5m, β � 1/2π, and ζ � 0.01.
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Around double of the critical speed, degradation failure
occurs abruptly due to unstable vibration when crack depth
reaches the threshold depth. Moreover, the judgment of this
unstable vibration region has nothing to do with eccentricity
with only the homogeneous form of the vibration differential
equations considered according to Floquet’s theory.

6.2.2. Effect of Unbalance Orientation Angle. +e unbalance
orientation angle is a crucial parameter having inescapable
effect on vibration behavior of the cracked rotor, which has
been studied by some researchers [16, 54–57]. Since the
vibration is coupled with the crack growth, unbalance
orientation angle affects the degradation behavior
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consequently. Given ε� 1× 10−5m and ζ � 0.01, TD for
various rotation speeds and different unbalance orientation
angles (0-π, with increment 1/4π) are shown in Figure 14,
noting that the case for β ∈ (π, 2π) is omitted on the account
of geometric symmetry. As shown in Figure 14, the

regularity between TD and rotation speed is almost the same
for different β. Around the critical speed and submultiples of
it, the effect of β is relatively slight. However, around the
other rotation speeds, β has a considerable effect on TD. It is
worth noting that the speed range affected by the unbalance
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orientation angle is consistent with that affected by un-
balance eccentricity.

When Ω> 2300 rpm (1/2 of the critical speed), TD is
larger for β � 3/4π and is smaller for β � 1/4π. However,
when Ω< 2300 rpm, TD is larger for β � π. Take 1800 rpm,
3500 rpm, and 7000 rpm as representative rotation speeds to
investigate the different effects of β for different speed
ranges. Given r � 0.4, ε� 1× 10−5m, and ζ � 0.01, the av-
erage degradation rates for different β are shown in Figure 15
and the amplitude of vibration response are shown in
Figure 16. WhenΩ� 1800 rpm, VM decreases as β increases.
However when Ω� 3500 rpm and 7000 rpm, VM decreases
firstly and then increases as β increases. As to the vibration
amplitude shown in Figure 16, the amplitude decreases as β

increases for all the three speeds, and the amplitude is the
smallest at β � π, which is in agreement with the result of
[56, 57]. It is worth noting that when Ω� 3500 rpm and
7000 rpm, the VM increases as the amplitude decreases for
relatively large β, which is different than anticipated. +e
reason is that different β causes different variation of the
vibration phase [58] and then leads to the offset or super-
position of the tensile or compressive stresses of the di-
rections ξ and η. +erefore, the range of the equivalent stress
may be inconsistent with the magnitude of the vibration
amplitude. Given Ω� 7000 rpm, r � 0.4, ε� 1× 10−5m, and
ζ � 0.01, the variation of σξ , ση, and σe during one rotation
period for β � 3/4π and β � π is shown in Figure 17. +e
different effects of β � 3/4π and β � π on the offset or
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Figure 16: Vibration amplitude versus unbalance orientation angle for different rotation speeds with r � 0.4, ε� 1× 10−5m, and ζ � 0.01.
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Figure 17: Stress variation during a rotation period with Ω� 7000 rpm, r � 0.4, ε� 1× 10−5m, and ζ � 0.01: (a) β � 3/4π; (b) β � π.
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superposition of the stresses are not obviously presented in
Figure 17 due to the very small variation of the stress during
only one rotation period. However, for relatively large
numbers of rotation periods, the effect becomes remarkable
due to accumulation. For example, when Ω� 7000 rpm,
r � 0.4, ε� 1× 10−5m, and ζ � 0.01, the crack grows
4.1168×10−4m after 1000 rotation periods for β � 3/4π and
4.7291× 10−4m for β � π.

6.3. Effect of Damping. Damping is unavoidable in me-
chanical systems in practice, which is also an important
parameter of the cracked rotor system. Given ε� 1× 10−5m
and β � 1/2π, TD for different damping ratios (0.01–0.05
with increment 0.01) and various rotation speeds are shown
in Figure 18. For different damping ratios, the regularity of
TD versusΩ is almost the same.+e larger the damping ratio
is, the larger the TD is. +e influence of ζ on TD is mainly
reflected around the submultiples and double of the critical
speed. At 2/3 of the critical speed (2900 rpm), larger
damping (ζ ≥ 0.02) prevents the unstable bifurcation motion
and TD does not decrease for large damping, which is in
agreement with the result reported by Gasch [52]. It is worth
noting that the rotation speed ranges affected by damping is
quite different from that by unbalance.+erefore, in order to
increase TD of a rotor running at a specific speed in practice,
the effectiveness of reducing unbalance or increasing
damping should be carefully considered. Besides, the valley
of TD is vanished around double of the critical speed when
damping is large (ζ � 0.05). +e reason is that degradation

failure caused by unstable vibration response does not occur
since the large damping prevents the bifurcation motion of
the cracked rotor system.

Given ε� 1 × 10−5 m and β � 1/2π, the average degra-
dation rates for different damping ratios (ζ � 0.02, 0.03,
0.04, and 0.05) are shown in Figure 19. It is revealed that
damping has obvious influence on the region of relatively
fast degradation rate. As damping increases, each region of
relatively fast degradation rate shrinks and the value of VM

decreases. Especially for large damping (ζ � 0.05), the
region of the fast degradation rate completely vanishes
around double of the critical speed. +e reason is that
damping ratio ζ has great influence on the stability of the
cracked rotor system. Specifically, the area of the unstable
region decreases as damping ratio increases, which means
damping is beneficial for the stability of the cracked rotor
system [27, 37, 52, 53]. Given ε� 1 × 10−5 m and β � 1/2π,
for different damping ratios (ζ � 0.01 and 0.05), the 3D
graphs of the maximum Floquet multipliers with the
change of crack depth and rotation speed are shown in
Figure 20. Moreover, the Floquet multipliers are plotted on
the complex plane as also shown in Figure 20. For small
damping ratio (ζ � 0.01), the maximum Floquet multipliers
exceed 1 around the critical speed and double of it with
a deep crack (r> 0.2). +e way in which the Floquet
multipliers exceed the unit circle as shown in Figure 20(a)
indicates the types of bifurcation for unstable vibration
responses are period doubling and saddle-node. For large
damping ratio (ζ � 0.05), the maximum Floquet multi-
pliers are always smaller than 1 as shown in Figure 20(b),
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Figure 18: Fatigue degradation life versus rotation speed for various damping with ε� 1× 10−5m and β � 1/2π.
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which means the vibration responses are stable for any
crack depth and rotation speed labeled on the image.

7. Conclusions

+e fast-slow coupling model of the rotor vibration and the
crack growth is established, and an approximate numerical
procedure based on sequential iteration is proposed to solve
the coupling model. A competing degradation failure cri-
terion is proposed through the analysis of the two degra-
dation failure modes of the cracked rotor system, namely,
crack rapid growth failure and unstable vibration failure.
Numerical simulations show that if the coupling effect is
omitted, one may obtain wrong degradation evolutions,
which may cause risky accidents or waste of maintenance
resources.

+e effects of multiple parameters on the degradation
behavior, including rotation speed, unbalance eccentricity
and orientation angle, and damping, are investigated in
detail. Results show that there is no simple intuitive regu-
larity of degradation evolution, since the degradation be-
havior is affected by multiple parameters of the coupling
model. When the rotation speed is around the critical speed,
the vibration becomes unstable through period-doubling
bifurcation, as the crack propagates. Due to the increase
of vibration amplitude, the cracked rotor degrades very fast.
When the rotation speed is around submultiples of the

critical speed, degradation is relatively fast due to sub-
resonance. And this phenomenon of fast degradation
gradually vanishes as speed decreases. When the rotation
speed is far away from the resonance and subresonance
region, the degradation may also be fast due to the unstable
vibration responses under some parameter group, for ex-
ample, 2/3 of the critical speed with relatively deep crack and
small damping.When the rotation speed is around double of
the critical speed, the vibration may become unstable
abruptly due to saddle-node bifurcation. Once the crack
grows to some threshold depth, degradation failure occurs
abruptly.

+e degradation rate increases as unbalance eccentricity
increases and as damping decreases. Unbalance orientation
angle causes different variations of the vibration phase,
which leads to the offset or superposition of the tensile or
compressive stresses. +us, when rotation speed is larger
than 1/2 of the critical speed, degradation is slow for
β � 3/4π; otherwise, degradation is slow for β � π. More-
over, the rotation speed ranges affected by damping are
mainly the speed around the critical speed, submultiples,
and double of it but that affected by unbalance eccentricity
and orientation angle are just the opposite.

In engineering practice, the speed ranges corresponding
to the fast fatigue degradation should be avoided and re-
ducing unbalance eccentricity, changing unbalance orien-
tation, or increasing damping can effectively retard
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Figure 19: Average degrading rate versus crack depth ratio and rotation speed with ε� 1× 10−5m and β � 1/2π for various damping ratios:
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degradation at specific rotation speeds. +e findings are of
significance to guide the safety design of the rotor system for
long time operation and help to the further research on
prognostics and lifetime prediction.

Appendix

A. Flexibility Coefficients of the Cracked Rotor

+e total flexibility of the cracked rotor is made up of two
parts: one is the uncracked rotor flexibility, and the other is
the additional flexibility introduced by the crack. Based on
the material mechanics, the uncracked rotor flexibility is

g0 �
L3

48EI
, (A.1)

where L is the length of the shaft, E is Young’s modulus, and
I is the inertia moment of the shaft cross section, and
I � πD2/64.

+e additional flexibility introduced by the crack
changes with the amount of the open part of the crack.When

accounting for partial opening and closing of the crack, the
cross stiffness terms kxy and kyx appear.+e flexibility due to
crack is

gij �
zui

zQj

, (A.2)

where i and j denote the direction of ξ and η, Q is the force
acting on cross section of the crack, and u is the additional
deflection due to the crack and is given as

ui �
z

zQi

􏽚 J(α) dα􏼔 􏼕. (A.3)

J(α) is the strain energy density function given by

J(α) �
1
E

K
I

􏼐 􏼑
2
. (A.4)

KI is the opening mode (mode I) stress intensity factors
(SIFs), which is the sum of two SIFs:

K
I

� K
I
Qξ

+ K
I
Qη

. (A.5)
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Figure 20: Maximum Floquet multipliers versus crack depth ratio and rotation speed and Floquet multipliers on the complex plane for
(a) ζ � 0.01 and (b) ζ � 0.05.
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KI
Qξ

and KI
Qη

are SIFs due to Qξ and Qη, which are the
lateral forces at the crack location. KI

Qξ
and KI

Qη
are

expressed as

K
I
Qξ

� σξ
���
πα

√
F

α
α′

􏼒 􏼓,

K
I
Qη

� ση
���
πα

√
F′

α
α′

􏼒 􏼓.

(A.6)

It may be noted that, owing to pure bending assumption,
the effect of shear deformation is not taken into account.
Also since torsional effects are not considered, cracking in
modes II and III involving shear stresses is not present. σξ
and ση are the bending stress due to Qξ and Qη, which are
expressed as

σξ(w) �
QξL/4􏼐 􏼑 α′/2( 􏼁

I
,

ση(w) �
QηL/4􏼐 􏼑w

I
.

(A.7)

+e functions F and F′ in (9) are given by

F
α
α′

􏼒 􏼓 �

�����������

2α′
πα

tan
πα
2α′

􏼒 􏼓

􏽳

0.923 + 0.199 1− sin πα/2α′( 􏼁􏼂 􏼃
4

cos πα/2α′( 􏼁
,

(A.8)

F′
α
α′

􏼒 􏼓 �

������������

2α′
πα

tan
πα
2α′

􏼒 􏼓

􏽳

·
0.752 + 2.02 α/α′( 􏼁 + 0.37 1− sin πα/2α′( 􏼁􏼂 􏼃

3

cos πα/2α′( 􏼁
.

(A.9)

Using (4)–(12), the flexibility coefficients of the cracked
rotor can be written as

gξ �
L3

48EI
+ B128L2α′2α2

EπD8 F
α
α′

􏼒 􏼓
2
dαdw,

gη �
L3

48EI
+ B512L2w2α

EπD8 F′
α
α′

􏼒 􏼓
2
dαdw,

gξη � gηξ � B256L2α′wα
EπD8 F

α
α′

􏼒 􏼓F′
α
α′

􏼒 􏼓dαdw. (A.10)

B. Stability Analysis Based on Floquet’s Theory

Given q � y x􏼂 􏼃
T, (9) can be written as follows:

M€q + C _q + K(t)q � F, (B.1)

where

M �
m 0

0 m
􏼢 􏼣,

C �
c 0

0 c
􏼢 􏼣,

F �
mεω2 cos(θ + β)−mg

mεω2 sin(θ + β)
􏼢 􏼣,

K �
k0 − 0.5F(θ) 2k0 − 􏽢kξ − 􏽢kη + 􏽢kη − 􏽢kξ􏼐 􏼑cos 2θ􏽨 􏽩􏽮 􏽯 0.5F(θ) 􏽢kη − 􏽢kξ􏼐 􏼑sin 2θ􏽨 􏽩

0.5F(θ) 􏽢kη − 􏽢kξ􏼐 􏼑sin 2θ􏽨 􏽩 k0 − 0.5F(θ) 2k0 − 􏽢kξ − 􏽢kη − 􏽢kη − 􏽢kξ􏼐 􏼑cos 2θ􏽨 􏽩􏽮 􏽯

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(B.2)

According to Floquet’s theory, the homogeneous form of
(B.1) is considered, and the state space form is written as
follows:

_Y � A(t)Y, (B.3)

where Y � _q q􏼂 􏼃
T.

A(t) � A(t + T) �
−M−1C −M−1K

I 0
⎡⎣ ⎤⎦, (B.4)

where Hsu’s approximate numerical method [45] is ap-
plied to calculate monodromy matrix S. +e rotation
period T is divided into K intervals denoted by tk,
0< t0 < t1 < · · · < tk � T, where the size of the kth interval is
Δk � tk − tk−1. In the kth interval, the periodic matrix A(t) is

replaced by its averaged value, that is, by a constant matrix
Ck defined by Hsu [45]:

Ck �
1
Δk

􏽚
tk

tk−1

A(t) dt. (B.5)

+e approximate monodromy matrix in the kth interval
is expressed as

Sk � e
CkΔk( ), (B.6)

and at the end of period T as

S � 􏽙
K

k�1
Sk � 􏽙

K

k�1
e

CkΔk( ). (B.7)

+ematrix exponential e(CkΔk) is difficult to calculate and
can be evaluated by an Nlth-order truncated Taylor series:
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e
CkΔk( ) ≈ I + 􏽘

Nl

l�1

CkΔk( 􏼁
l

l!
. (B.8)

Finally, the monodromy matrix S can be written as

S ≈􏽙
K

k�1
I + 􏽘

Nl

l�1

CkΔk( 􏼁
l

l!
⎡⎣ ⎤⎦. (B.9)

+e eigenvalues Λ � eig(S) of the monodromy matrix
are called Floquet multipliers. According to Floquet’s theory,
if and only if the magnitudes of all its Floquet multipliers are
less than one, that is, if

max(|Λ|)< 1, (B.10)

the system is asymptotically stable.
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